
 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 1 of 6 

 

Name: __________ Class: ___ Date: ________ 

Task 1 
Mecanum vehicle with obstacle detection 

Construction task 
Build the Mecanum vehicle base model with sensors, according to the building 
instructions. The hubs of the Z20 toothed gears and the Mecanum wheels must be 
tightened well so there is no slippage while the vehicle is driving. 
In this task, you will use the track sensor (front) and ultrasound distance sensor for 
obstacle detection.  
The ultrasound distance sensor is connected to I6 (black cable), the two infrared (IR) 
sensors are connected to I7 (right sensor), and the yellow/blue cable to I8 (left sensor, 
blue cable). The IR sensors and the ultrasound sensor must also be supplied with 
power via the 9V voltage output of the TXT.  
Use the interface test to check whether the four motors are connected correctly 
(forward: anti-clockwise), that the four encoders are connected to the correct counter 
inputs (M1: C1, M2: C2, M3: C3 and M4: C4) and the two IR sensors are delivering the 
right values (white surface: 1, black line: 0). 
  



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 2 of 6 

 

Programming tasks 
 

 
Most important types of movement with Mecanum wheels 

 

1. Synchronous drive in all directions  
The figure shows the control of a Mecanum vehicle. The top three types of movements 
show the wheel drive required for travelling straight ahead, travelling at an angle and 
travelling sideways. Each of these three types of movement includes the forward and 
backward movement, as well as the movement to the left and right. If the black arrow 
beside the wheel is pointing upwards, the associated wheel should turn forwards. 
Because of this, we can differentiate between the following eight movements of the 
Mecanum vehicle (see also the animation in [1]): 

• Forwards 
• Backwards 
• Sideways to the left 
• Sideways to the right 
• At an angle to the front left 
• At an angle to the front right 



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 3 of 6 

 

• At an angle to the rear left 
• At an angle to the rear right 

Develop a Blockly subroutine for each of these movements (a function) to which you 
can transmit the speed of the motors as a parameter.  
The functions will be required in subsequent functions. These make the control 
programs clearer and easier to understand. Test your functions using simple example 
programs. 
Please note: Synchronisation of the motors is particularly important in Mecanum 
wheels (see also task 6 of the Robotics TXT 4.0 Base Set). 
 

2. Synchronous turning 
The bottom two types of movement shown in the figure are the two most important 
rotational movements that can be completed with Mecanum wheels: turning in place 
and travelling along a curve. These also include multiple directions of movement, such 
as rotating to the left and right, or turning left or right and travelling forwards and 
backwards along a curve. 
In total, this results in six additional movements: 

• Rotating in place to the right (clockwise) 
• Rotating in place to the left (anti-clockwise) 
• Turning to the right  
• Turning to the left  
• Turning backwards to the right  
• Turning backwards to the left  

Develop a Blockly subroutine for each of these movements (a function) to which you 
can transmit the speed of the motors as a parameter. Test your functions using simple 
example programs. 
 

3. Synchronous drive with distance specification 
To navigate the Mecanum vehicle precisely, you will now need a section of the 
command set from programming tasks 1 and 2, each with a specified distance as well 
– the number of impulses by which the motor should turn.  
3a. Add a specified distance to each of the following movement functions from 
programming tasks 1 and 2: a set number of impulses 

• To travel straight ahead (forward/backward)  
• To travel sideways (left/right) and  
• To turn around the vehicle's own axis (left: clockwise, right: anti-clockwise). 



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 4 of 6 

 

3b. Test these six functions on a previously measured test track and use experiments 
to determine the factors (impulses per cm or impulses per °) to calculate the required 
impulses from 

• A distance travelling straight ahead, in cm  
• A distance travelling sideways, in cm and 
• A rotational angle indicated in ° 

Similar to task 6 in the Robotics TXT 4.0 Base Set, you can measure the circumference 
of a Mecanum wheel as an initial estimate of the conversion factor when travelling 
straight ahead, and use it to derive the factor. 
 

4. Line detection 
The Mecanum vehicle should now identify the boundary lines and edges using the 
track sensor, and avoid these: If a (black) boundary line or gap is detected, the vehicle 
should drive back 10 cm, turn a quarter turn away from the edge (45°) and continue 
travelling.  
4a. Draw a state diagram showing this. 
4b. Now, use your navigation functions from programming tasks 1 and 2 to write a 
Blockly program (see also task 6 from the Robotics TXT 4.0 Base Set). 
 

Experimental tasks 
 

1. Obstacle detection using ultrasound 
The Mecanum vehicle is equipped with an ultrasound sensor which delivers the 
distance from an object in cm (see also task 1 from the Robotics TXT 4.0 Base Set).  
Write a Blockly program that prevents the vehicle from coming any closer than 15 cm 
to an obstacle. When it detects an obstacle, it should avoid it by driving sideways until 
the ultrasound sensor no longer detects an obstacle within a distance of 25 cm (see 
also task 6 in the Robotics TXT 4.0 Base Set), and then continue travelling. 
 

2. Encoder navigation 
You can also use the values from the encoder in the Mecanum vehicle to calculate the 
distance travelled. This will allow you to navigate to a specified goal, for which the 
linear distance in cm is specified. Mark a goal 3 m away (linear distance) on the floor 
for your test. 
Now, block the path to the goal with first one, then later with multiple obstacles. 
Develop a strategy that will allow the vehicle to avoid the obstacles and then continue 
travelling to the specified goal along the shortest available path.  



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 5 of 6 

 

2a. Describe your strategy using a sketch. 
2b. Add this function to your Blockly program from experimental task 1. 
 
Tip: The Mecanum vehicle turns around the centre of the vehicle. All calculations to 
the path of travel, therefore, always relate to the centre point of the vehicle. If the travel 
should start and end on a line in front of the bumper, then the vehicle must finally be 
turned back in the direction of travel so that it will stop in front of the goal line. 
  



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 6 of 6 

 

Annex 
Mecanum vehicle with obstacle detection 

Required materials 
• PC for program development, local or via web interface.  
• USB cable or BLE or WiFi connection to transmit the program to the TXT4.0.  
• Course sheet with black line in a closed circle, 2 cm wide (from the Robotics TXT 

4.0 Base Set). 
 

Further information 
[1] FRC Team 2605 (Bellingham, WA): How a Mecanum Drive Works. github.io 
[2] Online diagram editor for creating state diagrams (Format drawio): 

https://www.diagrammeditor.de/ 

https://seamonsters-2605.github.io/archive/mecanum/
https://www.diagrammeditor.de/


 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 1 of 2 

 

Task 1: Mecanum vehicle with obstacle detection 

In this beginning task, students will learn how to navigate using a vehicle with 
Mecanum wheels. They will develop functions to abstract the movement processes. 
The vehicle will learn how to move in space and avoid obstacles and boundary lines. 
 
Omniwheels allow a vehicle to move in any direction at any time. On a Mecanum wheel, 
the rollers are placed at an angle to the main axle, allowing for omnidirectional driving 
manoeuvres. 
 

Topic 
Controlling a vehicle with Mecanum wheels and detecting obstacles. 

 
Learning objectives 
• Understanding the function and control of Mecanum wheels  

• Easy to understand programming with state variables and functions 

• Detecting lines and obstacles using sensors (infrared, ultrasound) 

• Navigation via motor pulses 
 

Time required 
students will need 45-90 minutes (one to two hours of instruction) to build the base 
model Mecanum vehicle with sensors using the building instructions, depending on 
their previous experience. 
To develop the programs to solve the programming tasks, students will need 
experience with the Robotics TXT 4.0 Base Set, two to three hours of instruction (90-
135 minutes).  
Completing the experimental tasks will require an additional 90-135 minutes. 
 

  



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 2 of 2 

 

Annex 
Task 1: Mecanum vehicle with obstacle detection 

Required materials 
• PC for program development, local or via web interface.  
• USB cable or BLE or WiFi connection to transmit the program to the TXT4.0.  
• Course sheet with black line in a closed circle, 2 cm wide (from the Robotics TXT 

4.0 Base Set). 
 

Further information 
[1] FRC Team 2605 (Bellingham, WA): How a Mecanum Drive Works. github.io 
[2] Online diagram editor for creating state diagrams (Format drawio): 

https://www.diagrammeditor.de/ 
 



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 1 of 14 

 

Name: __________ Class: ___ Date: ________ 

Solution sheet task 1 
Mecanum vehicle with obstacle detection 

The control functions developed in the first programming task serve as the basis for all 
subsequent tasks.  
The ways the sensors are used (track sensor, ultrasound) are similar to those in task 
6 of the Robotics TXT 4.0 Base Set. Thanks to the flexible movement options offered 
by the Mecanum wheels, however, there are also simpler solutions available. 

 

Programming tasks 
 

1. Synchronous drive in all directions 
Configuring the sensors: 

 
  



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 2 of 14 

 

Control functions (example): 

 
Mecanum_Synchronous_Driving_Funktions.ft 

  



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 3 of 14 

 

 

2. Synchronous turning 
Control functions (example): 

 
Mecanum_Synchronous_Turning_Functions.ft 

  



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 4 of 14 

 

 

3. Synchronous drive with distance specification 
3a. The distance (in cm) can be converted into impulses either in the function or when 
it is called up. 
Program functions (example): 

 
Mecanum_Synchronous_Navigation_Distance.ft 

 
3b. The circumference of a Mecanum wheel is around 19 cm. This makes it easy to 
calculate the number of impulses per revolution (as in task 6 of the Robotics TXT 4.0 
Base Set): Since the wheels are geared down by the motors with a ratio of 1:2, this is 
around !".$·&

'$
≈ 𝟔. 𝟕𝟐𝟔 impulses/cm. 

Tests over distances of several meters show that the value must be corrected to 
around 6.82 impulses/cm. 
Only experiments (see the following program) can help determine the conversion factor 
for sideways travel and turning. In tests, the value for sideways travel was calculated 



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 5 of 14 

 

at around 9.5 impulses/cm and the value for turning was calculated at 1.7 
impulses/angular degree.  
  



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 6 of 14 

 

Program (example) for testing the conversion factors: 

 
Mecanum_Synchronous_Navigation_Distance.ft  



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 7 of 14 

 

4. Line detection 
Configuring the sensors and actuators: 

 
 
4a. State diagram: 

 
State-Transition_Diagram_Mecanum_with_IR_Sensors.drawio 

  



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 8 of 14 

 

 
4b. Program excerpt (example): 

 
Mecanum_Boundary_Line.ft  



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 9 of 14 

 

 

Experimental tasks 
 
1. Obstacle detection using ultrasound 
Configuring the sensors and actuators: 

 
  



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 10 of 14 

 

 
Program excerpt (example): 

 
Mecanum_Collision_Prevention.ft 

2. Encoder navigation 
Configuring the sensors and actuators: 

 



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 11 of 14 

 

 
2a. There are multiple strategies for solving this task. The strategy illustrated in the 
following uses a simplified version of the mathematical model described in the 
example solution for the experimental task in task 6 of the Robotics TXT 4.0 Base 
Set, thanks to the possibilities offered by the Mecanum wheels: 

 
Mecanum_Model_Target_Reacher.jpg 

 
Solution strategy:  
The Mecanum vehicle is aligned towards the goal and started travelling 
straight ahead. If it detects an obstacle while driving, it avoids it by moving to 
the right side until the obstacle no longer detects any obstacles within a 
distance of 25 cm. To ensure the robot does not hit the obstacle when 
driving past, it drives another 15 cm to the right (𝑑).  
Then it drives 25 cm (𝑎) straight ahead. Then, based on the remaining 
impulses for the (original) direct path to the goal (𝑐) and the distance 
travelled to drive around the obstacle sideways (𝑑) the new distance to the 
goal (distance to goal (new)) and the angle of rotation 𝛽 for correcting 
alignment to the goal are calculated.  
Calculating the new distance to the goal is simple; it can be obtained using 
the Pythagorean theorem: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑡𝑜	𝑔𝑜𝑎𝑙	(𝑛𝑒𝑤) = 7𝑐& + 𝑑& 
Therefore, we calculate the distance 𝑑 from converting the impulses counted 
during sideways travel plus 15 cm; the length 𝑐 is calculated by subtracting 
the distance to drive around the obstacle 𝑎 (25 cm) from the impulses still to 
be completed at the start of the deviating manoeuvre (remaining impulses to 
goal) and the distance this represents (remaining distance to goal). 
The angle 𝛽 by which the robot must turn to the left so it can drive towards 
the goal once again can also be determined in a calculation step: 

𝛽 = arccos >
𝑐

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑡𝑜	𝑔𝑜𝑎𝑙	(𝑛𝑒𝑤)? 



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 12 of 14 

 

The solution strategy also works with multiple obstacles in a row. 
After reaching the goal, the vehicle turns back to the right to the original direction of 
travel. To do so, all of the angles 𝛽 by which the Mecanum vehicle had to change its 
direction after the avoidance manoeuvres are added up.  
 
Important note: Since the conversion values for the impulses per cm differ during 
forward travel and sideways travel, the calculation of the new distance to the goal and 
angle of rotation 𝛽 should be completed in cm. 
  



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 13 of 14 

 

2b. Program excerpt (example): 

Mecanum_Target_Reacher.ft 



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 14 of 14 

 

Annex 
Mecanum vehicle with obstacle detection 

Required materials 
• PC for program development, local or via web interface.  
• USB cable or BLE or WiFi connection to transmit the program to the TXT4.0.  
• Course sheet with black line in a closed circle, 2 cm wide (from the Robotics TXT 

4.0 Base Set). 
 

Further information 
[1] FRC Team 2605 (Bellingham, WA): How a Mecanum Drive Works. github.io 
[2] Online diagram editor for creating state diagrams (Format drawio): 

https://www.diagrammeditor.de/ 



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 1 of 5 

 

Name: __________ Class: ___ Date: ________ 

Task 2 
Track follower 

Construction task 
For the third programming task and the experimental tasks, we will need the camera 
on the Mecanum vehicle base model, with sensors. Connect it to the USB1 port of the 
TXT.  
 
Important note: When the TXT is started, the servo automatically switches to “forward 
setting”. Then, insert the servo lever so that the camera is tilted at an angle of 
approximately 45° from vertical to the front. 
Note: If you move the servo manually with the TXT switched on, you may damage it.  
 

Programming tasks 
 
1. Track follower with track sensor 
Now, the Mecanum vehicle should follow the black, approx. 2 cm wide track on the 
course from the Robotics TXT 4.0 Base Set (see also task 8 from the Robotics TXT 
4.0 Base Set) with the help of the track sensor.  
1a. First, create a state diagram that describes the possible states and behaviour of 
the Mecanum vehicle. 
1b. Convert your state diagram into a Blockly program. To do so, use a state variable 
with a state value which you determine based on the values from the IR sensors.  
Test the program on the circular course of the Robotics TXT 4.0 Base Set. 
1c. How can you increase the speed of the Mecanum track follower? Conduct tests 
and measure the time the track follower needs to complete the course. 
 

Solution variants (adjustments, parameters) Time 

  

  

  

  



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 2 of 5 

 

  
 
2. Track follower with obstacle detection 
There can also be obstacles on the track. If the ultrasound sensor detects an obstacle 
at a maximum 2 cm distance on front of the vehicle, the vehicle should move sideways 
to travel past the obstacle and then find the track once again. 
Think of different possible solutions to find the line. Add this function to your Blockly 
program and test the variants. What advantages and disadvantages do they have? 
 
3. Track follower with colour control 
You will see four coloured surfaces at the corners of the course. You can use these 
coloured surfaces to give commands to your Mecanum vehicle.  
3a. Add a colour recognition function to your Blockly program. Output the RGB-HEX 
colour code of the detected colour on the console in order to calibrate the detection.  
3b. Determine how the Mecanum vehicle should react to different colours (at least two), 
and modify your Blockly program accordingly. 
 
Note: Do not be surprised if the HEX value displayed on the console seems to fluctuate 
significantly – the hue value is stable. You can use any of the displayed HEX colour 
codes for the detection. 

  



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 3 of 5 

 

Experimental tasks 
 
1. Track follower with proportional controller 
Now, you should equip the track follower with a proportional controller (P controller) 
like the track follower buggy from task 8 of the Robotics TXT 4.0 Base Set. The amount 
by which the direction is corrected should depend on the amount of line deviation. Here 
as well, the camera's line detection function should be used to determine deviation 
from the track.  
1a. First, label the following control circuit with the values for your Mecanum track 
follower:  

 
 
1b. Design and program a proportional controller (P controller) for your Mecanum track 
follower. You can use the detection process for the black line from experimental task 
1 from task 8 of the Robotics TXT 4.0 Base Set.  
Test your program on the simple straight line course by starting the Mecanum track 
follower in parallel to the track, so that the centre point of the track appears far to the 
left of the image.  
Tip: Start with the proportionality factor 𝑘! = 2. Increase the value in increments of 1 
until the Mecanum track follower quickly “engages”, meaning that the deviation from 
the track quickly reduces without the controller jumping or overshooting too severely. 
 
1c. Add a text output to your program that indicates  

• the time (in ms) which has passed since the start of the program and  
• the value for the current deviation  

separated by a space on the console after each change in the deviation from the track. 
After each test run with a different value for 𝑘!, copy the information output on the 
console into a spreadsheet, and display the values graphically in a diagram (x: Time, 
y: Deviation from the track). Adjust the proportionality factor 𝑘! until the curve 
progression engages quickly.  
Test the track follower with the circular course from the Robotics TXT 4.0 Base Set. 
You may need to reduce the maximum speed somewhat. 

Controller Controlled 
system 



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 4 of 5 

 

 
2. Track follower with PD controller 
Just like the buggy in task 8 of the Robotics TXT 4.0 Base Set, you can add a “D” factor 
(differential factor) to the controller that takes the amount of change in deviation from 
the track into account in the speed correction, to further dampen overshooting. 
Expand the P controller in your Mecanum track follower from experimental task 1 so 
that it is a PD controller. Complete test runs with different values for the differential 
factor 𝑘" and use a spreadsheet program to display the data graphically. 
 
Tip: Start your tests with the differential factor 𝑘" = 0.25 and increase its value in 
increments of 0.25 until the overshoot of the P controller is dampened. 
  



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 5 of 5 

 

Annex 
Task 2: Track follower 

Required materials 
• PC for program development, local or via web interface.  
• USB cable or BLE or WiFi connection to transmit the program to the TXT4.0.  
• Course sheet with straight black line 2 cm wide 
• Course sheet with black line in a closed circle, 2 cm wide (from the Robotics TXT 

4.0 Base Set) 
• Obstacle (box, can, ...)  
 

Further information 
[1] FRC Team 2605 (Bellingham, WA): How a Mecanum Drive Works. github.io 
[2] Wikipedia: Finite automaton (state machine) 
[3] Ferdinand Wagner, Ruedi Schmuki, Thomas Wagner, Peter Wolstenholme: 

Modeling Software with Finite State Machines. A Practical Approach. Auerbach 
Publications, 2006. 

[4] Online diagram editor for creating state diagrams (Format drawio): 
https://www.diagrammeditor.de/ 

[5] Wikipedia: Control technology. 
[6] Wikipedia: Controller.  
[7] RN-Wissen: Control technology.  
[8] Tim Wescott: PID without a PhD. Embedded Systems Programming, 10/2000, 

p. 86-108. 



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 1 of 2 

 

Task 2: Track follower 

In this task, you will build a “track follower” using the track sensor from the Mecanum 
vehicle: The vehicle learns to travel autonomously along a black line.  

In the experimental task, the vehicle will be outfitted with a camera with line detection: 
As an analogue sensor, it allows for a track follower with P and PD controller.  

The task builds on task 8 from the Robotics TXT 4.0 Base Set. 
 

Topic 
Digital control of the vehicle and proportional (and PD) control of travel along a black 
line; identifying and reacting to obstacles. 

 
Learning objectives 
• Simple three point control using digital sensors  

• Adding obstacle detection (ultrasound distance measurement) 

• Analogue regulation using line detection (camera with image evaluation) 
• Calibration of a P and PD controller 
 

Time required 
The Mecanum base model vehicle with sensors constructed in task 1 is used in this 
task. 
Students will need the knowledge gained in the Robotics TXT 4.0 Base Set to develop 
the programs needed to solve the programming tasks (in particular task 8); assumed 
time 45 - 90 minutes (one to two hours of instruction).  
A P and a PD controller are developed during the experimental tasks. Several hours 
of instruction should be set aside to program and set the controllers (90 - 180 minutes 
each). We recommend that students work in groups. 
 

  



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 2 of 2 

 

Annex 
Task 2: Track follower 

Required materials 
• PC for program development, local or via web interface.  
• USB cable or BLE or WiFi connection to transmit the program to the TXT4.0.  
• Course sheet with straight black line 2 cm wide 
• Course sheet with black line in a closed circle, 2 cm wide (from the Robotics TXT 

4.0 Base Set) 
• Obstacle (box, can, ...)  
 

Further information 
[1] FRC Team 2605 (Bellingham, WA): How a Mecanum Drive Works. github.io 
[2] Wikipedia: Finite automaton (state machine) 
[3] Ferdinand Wagner, Ruedi Schmuki, Thomas Wagner, Peter Wolstenholme: 

Modeling Software with Finite State Machines. A Practical Approach. Auerbach 
Publications, 2006. 

[4] Online diagram editor for creating state diagrams (Format drawio): 
https://www.diagrammeditor.de/ 

[5] Wikipedia: Control technology. 
[6] Wikipedia: Controller.  
[7] RN-Wissen: Control technology.  
[8] Tim Wescott: PID without a PhD. Embedded Systems Programming, 10/2000, 

p. 86-108. 



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 1 of 13 

 

Name: __________ Class: ___ Date: ________ 

Solution sheet task 2 
Track follower 

The students’ solutions should use the sub-functions from task 1 to control the vehicle. 
Just as in the solution for task 8 in the Robotics TXT 4.0 Base Set – a state variable 
should be used to differentiate between the states when programming the track 
follower. This makes the programs very clear and easy to understand.  
The two experimental tasks help students understand how to develop and configure a 
P and PD controller. The output and graphic display of measured values are 
particularly important. 

 

Construction task 
Connecting the sensors: 

 
  



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 2 of 13 

 

Programming tasks 
 
1. Track follower with track sensor 
Just like the buggy in task 8 of the Robotics TXT 4.0 Base Set, the Mecanum vehicle 
should be steered so that both IR sensors in the track sensor are centred over the 
black line, so that they both deliver a value of 0. 
1a. State diagram for the (digital) track follower: 

 
State-Transition_Diagram_Line_Follower.drawio 

 
1b. Depending on the values from the left and right IR sensors, the state variables state 
have the following values: 

• state = 0 → on the track (both sensors deliver a value of 0) 
• state = 1 → track to the left (only the left sensor has the value 0) 
• state = 2 → track to the right (only the right sensor has the value 0) 
• state = 3 → track lost (both sensors deliver the value 1) 

 



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 3 of 13 

 

 I8 (left sensor ) I7 (right sensor) 
Black line (track) 0 → state += 0  0 → state += 0 

Light area 1 → state += 2 1 → state += 1 
 
Reading example: If the left sensor (I8) delivers the value 0 and the right sensor (I7) 
delivers the value 1, then the track is located to the left of the centre of the vehicle. The 
state variable state has a value of 1, and in this state the vehicle must be steered to 
the left so that the sensor is centred over the track once again. 
 
The following example solution uses the navigation functions programmed in task 1 for 
the Mecanum vehicle. This makes the program very easy to understand.  
At the start of the loop, the state variable is set to a state value from {0, 1, 2, 3} 
depending on the values of the two IR sensors. 
Program excerpt (example):  



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 4 of 13 

 

 
Mecanum_Line_Follower_digital.ft 

 

1c. The speed of the track follower can be increased by choosing the highest possible 
main speed (“speed”) and reducing the speed distance between the motors during 



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 5 of 13 

 

steering, adjusting the “slow” speed so that the track follower does not lose the track, 
particularly on curves. 
 
Note: You can also understand the digital track follower as a three-point controller 
which regulates the speed of the motors depending on the three states “left of the 
track”, “on the track” and “right of the track”. The area within which both IR sensors 
deliver the target value of “0” (both are directly over the track) is also called the 
hysteresis. 
 
2. Track follower with obstacle detection 
After the vehicle deviates from the line, it can find it again behind the obstacle by 

• driving to the side once again (disadvantage: the depth of the obstacle is 
unknown, therefore it may hit the obstacle or miss the line if there is a tight curve 
right behind the obstacle; advantage: the vehicle finds a straight line in the right 
position) 

• travelling diagonally (disadvantage: it may hit the obstacle; it is very likely to 
miss the line; advantage: a straight line is found in the correct alignment to 
continue driving) 

• turning by 45°-90°, then driving straight ahead (disadvantage: it may hit the 
obstacle, miss the line or continue driving in the wrong direction once it finds the 
line) 

• Driving in a curve around the obstacle (disadvantage: the vehicle may continue 
driving in the wrong direction once it finds the line) 

Program excerpt (example): 

 …  
Mecanum_Line_Follower_Obstacle_digital.ft 

  



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 6 of 13 

 

3. Track follower with colour control 
Connecting the camera: 

 
 
3b. Program excerpt (example): 

 

 

 
Mecanum_Line_Follower_with_Color_Detection_digital.ft 

  



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 7 of 13 

 

Experimental tasks 
 
Connecting the sensors: 

 
 
1. Track follower with proportional controller 
The camera line detector delivers the deviation from the centre of the detection 
window.  
Configuring the line detection: 

 
 



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 8 of 13 

 

Since coloured surfaces can be detected as a line, the line detection should be set to 
at least two lines. 
1a. Control circuit:  

 
Regelkreis_Mecanum_Spurfolger.drawio 

 

1b. Program excerpt (example): 

 

Controller Controlled 
system 

d: Curve 

w: Specification: 
Track in the 
centre of the 

image 

e: Deviation of the track 
from the centre of the 

image 
u: Speed of the steering 

motors 

y: Position of the track 
centre point in the camera 

image 



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 9 of 13 

 

Mecanum_Line_Follower_P_Controller.ft 

 
Mecanum_Line_Follower_P_Controller.ft 

 
Multiplied by the proportionality factor 𝑘!, the position is added to or subtracted from 
the motor speed for turning left or right (function turn), so that the deviation from the 
track is reduced with the change in the direction of travel. Depending on the vertical 
position of the line detector in the camera configuration, it may be necessary to adjust 
the minimum and maximum line width in the program.  

  



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 10 of 13 

 

1c. Measurement results for the P controller (with 𝑘! ∊ {2, 3, 4, 5, 6, 7, 8}): 

 
Mecanum_Line_Follower_with_P_Controller_Results.jpg 

The red line with 𝑘! = 6 engages most quickly after approx. 1.7 seconds, without 
overshooting a second time. The controller oscillates with 𝑘! = 8 (dark blue line). 

  



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 11 of 13 

 

2. Track follower with PD controller  
The D factor of the PD controller is the change in deviation multiplied by the differential 
factor 𝑘". 
Program (example): 

 
Mecanum_Line_Follower_with_PD_Controller.ft 

  



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 12 of 13 

 

Measurement results for the PD controller (with 𝑘" ∊
{0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5}): 

 
Mecanum_Line_Follower_with_PD_Controller_Results.jpg 

 

The differential factor 𝑘" = 1.75 was most effective in dampening overshoot in the 
completed tests. The value can differ depending on the position of the line detection 
in the camera image and small structural differences between models. 



 ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 13 of 13 

 

Annex 
Task 2: Track follower 

Required materials 
• PC for program development, local or via web interface.  
• USB cable or BLE or WiFi connection to transmit the program to the TXT4.0.  
• Course sheet with straight black line 2 cm wide 
• Course sheet with black line in a closed circle, 2 cm wide (from the Robotics TXT 

4.0 Base Set) 
• Obstacle (box, can, ...)  
 

Further information 
[1] FRC Team 2605 (Bellingham, WA): How a Mecanum Drive Works. github.io 
[2] Wikipedia: Finite automaton (state machine) 
[3] Ferdinand Wagner, Ruedi Schmuki, Thomas Wagner, Peter Wolstenholme: 

Modeling Software with Finite State Machines. A Practical Approach. Auerbach 
Publications, 2006. 

[4] Online diagram editor for creating state diagrams (Format drawio): 
https://www.diagrammeditor.de/ 

[5] Wikipedia: Control technology. 
[6] Wikipedia: Controller.  
[7] RN-Wissen: Control technology.  
[8] Tim Wescott: PID without a PhD. Embedded Systems Programming, 10/2000, 

p. 86-108. 



ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 1 of 4 

 

Name: __________ Class: ___ Date: ________ 

Task 4 
Drawing robot 

The Mecanum-Omniwheels vehicle is now equipped with a pen – turning it into a 
drawing robot. 

Construction task 
Construct the drawing robot according to the manual or convert the Mecanum-
Omniwheels vehicle from 1, 2 or 3 into a drawing robot. Connect the encoder motors 
and the servomotor as specified on the wiring diagram. 
Use the interface test or your control program from task 1 to check whether all the 
motors have been connected properly. 
 
Important: Fix the pen (fineliner, felt tip) in the bracket in such a way that the tip is 
resting on the paper. Then start the TXT. The servo is automatically set to the middle 
setting. Then fit the servo lever onto the servo so that it is pointing forwards about 
horizontally and just about does not lift the pen with the pen holder.  
Use the interface test to test lowering of the pen via the servo. 
 
Attention: If you move the servo by hand with the TXT switched on, you can damage 
it.  
 

Programming tasks 
 
1. Lowering the pen 
For the drawing robot to be able to move without drawing a line, the pen has to be lifted 
by the servo motor. 
Add a function for lifting and lowering the pen to your function library for the Mecanum-
Omniwheels vehicle. Select the servo position with the aid of the interface test. 
 
 
2. “House of Santa Claus” 



ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 2 of 4 

 

Using the navigation functions from task 1, you can now make the drawing robot draw 
the “House of Santa Claus” without lifting the pen from the paper.  
At the end, the drawing robot should lift the pen and move to the side a little. 
 
3. n-sided polygon 
Now the robot is to draw any n-sided polygon with a fixed edge length (as in task 7 of 
the Robotics TXT 4.0 Base Set). Try to design the program as generally and – using 
loops – as compactly as possible.  
Test the program by having the drawing robot draw a triangle, a rectangle, a pentagon 
... and finally a 15-gon one after the other.  
Tip: Do not choose an edge length that is too big. 

 
Experimental tasks 
 
1. Approach target point 
The drawing robot should now move from its current position to a (target) point) defined 
by coordinates (𝑥, 𝑦). Assume for this that the pen is at the zero point of the coordinate 
reference system (0, 0) when the program starts and the robot is aligned along the 
(positive) X-axis. 
1a. What movements does the drawing robot have to complete to travel from its 
position (zero point) to a given point (𝑥, 𝑦) by the shortest route? What calculations are 
necessary for this? 
Illustrate your thoughts with a drawing. 
1b. Using the navigation functions from task 1, write a program that makes the drawing 
robot move to the given point (𝑥, 𝑦) by the shortest route. Test your program with points 
measured beforehand. 
 
2. “Draw by numbers” 
In the program template “Mecanum_Drawing_Coordinates.ft” you will find two lists with 
x and y coordinates as well as one with “up/down” flags. The x and y coordinates 
describe one point each in the coordinate system with a point in the bottom left-hand 
corner of the paper as the starting point (0, 0).  
Position the drawing robot in such a way that the pen stops directly above the point 
(0, 0) and align the robot facing right, parallel to the bottom edge of the paper. The 
drawing paper should be at least 60 cm wide and 40 cm high. 
2a. Expand the control program for the drawing robot from experimental task 1 in such 
a way that the points (coordinates) on the list are approached one after the other. If the 



ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 3 of 4 

 

“up/down” flag belonging to the coordinate is equal 0, the drawing robot is to travel with 
the pen lifted, if it is equal to 1, it is to draw a line to this point. You can set the size of 
the picture by multiplying the coordinates by a fixed factor. 
2b. Take a photo of the picture the robot has drawn. What does it show? 
2c. Now you can prescribe the drawing robot your own coordinate lists for a picture. 
  



ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 4 of 4 

 

Attachments 
Task 4: Drawing robot 

Required materials 
• PC for program development, local or via web interface.  
• USB cable or BLE or WiFi connection for transmitting the program to the TXT4.0.  
• Pen (fineliner, felt pen), large sheet of white paper 
• Program template “Mecanum_Drawing_Coordinates.ft” 
 

Further information 
[1] Look for “Coordinate Grid Picture” on the internet. 
[2] Oliver Boorman: Cartesian Grid Image Generator. 



ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 1 of 2 

 

Task 4: Drawing robot 

The Mecanum-Omniwheels vehicle now becomes a drawing robot. It learns to draw 
geometric shapes according to specification using a felt tip or fineliner and it is taught 
to "draw by numbers”. 
 
The task follows on from task 7 of the Robotics TXT 4.0 Base Set. 
 

Topic 
Control of the Mecanum-Omniwheels vehicle to draw geometric shapes and 
prescribed lines. 
 

Learning objectives 
• Use of functions for clear program design 

• Modelling and calculation of vehicle control (trigonometry) 

• Design of data structures  
 

Time required 
For conversion of the Mecanum-Omniwheels vehicle from task 1 and 2 into a drawing 
robot, pupils need approx. 45 minutes; in the case of a complete reconstruction 
according to construction manual up to 75 minutes (assuming experience with 
fischertechnik). 
For development of the control program to solve programming tasks, pupils need about 
90 minutes, assuming previous knowledge from the Robotics TXT 4.0 Base Set 
(especially task 7). The time needed for solving the experimental tasks – depending 
on age and experience – is 135-180 minutes.  
 

  



ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 2 of 2 

 

Attachments 
Task 4: Drawing robot 

Required materials 
• PC for program development, local or via web interface.  
• USB cable or BLE or WiFi connection for transmitting the program to the TXT4.0.  
• Pen (fineliner, felt pen), large sheet of white paper 
• Program template “Mecanum_Drawing_Coordinates.ft” 
 

Further information 
[1] Look for “Coordinate Grid Picture” on the internet. 
[2] Oliver Boorman: Cartesian Grid Image Generator. 



ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 1 of 10 

 

Name: __________ Class: ___ Date: ________ 

Solution sheet task 4: 
Drawing robot 

The tasks are an exercise in using loops and functions with the aim of getting a clear, 
compact and comprehensible program. For this reason, the pupils’ results should be 
compared with one another.  

Construction task 
See building instructions. 
 

Programming tasks 
Connection of the actuators: 

 
 

 
 
1. Lowering the pen 



ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 2 of 10 

 

Program excerpt (example): 
 

 
 

The values for the “up” and “down” variables can be determined using the interface 
test. They are model-dependent and depend particularly on the position of the fitted 
servo arm. 
 
2. “House of Santa Claus” 
The “House of Santa Claus” can be drawn with eight lines without taking the pen off 
the paper. There are in fat 88 different correct possibilities. 
The following program example draws it with an edge length of 30 cm and uses the 
functions “forward_distance” and “pivot_left_angle” from task 1. 
Program (example):  



ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 3 of 10 

 

 

 
Mecanum_House_of_Santa_Claus.ft 

 
 
 



ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 4 of 10 

 

3. n-sided polygon 
The sum of the interior angles of an n-sided polygon is (𝑛 − 1) ∙ 180°. To be able to 
draw an n-sided polygon, the Mecanum-Omniwheels vehicle must thus be turned 
through 180° − ("#$)∙$'(°

"
 after every edge. The example solution generalises the task 

for drawing n-sided polygons and first draws a triangle, then a rectangle up to a 15-
gon with an edge length of 20 cm each. Two nested loops make the program very 
compact. 
Program excerpt (example): 



ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 5 of 10 

 

 
Mecanum_Drawing_Polygons.ft 



ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 6 of 10 

 

Experimental tasks 
 
1. Approach target point 
1a. To get from the point (0, 0) to a point (𝑥, 𝑦), the drawing robot must move along the 
hypotenuse of a right-angled triangle with the leg lengths 𝑥 and 𝑦.  

 
Mathematical_Model_Coordinates_Drawing.jpg 

The length of the hypotenuse is calculated using the Pythagoras' theorem: 

𝑑 = /𝑥* + 𝑦* 
The interior angle 𝛼 of the right-angled triangle can be determined using a little 
trigonometry: 

tan 𝛼 =
𝑦
𝑥 

The angle or rotation 𝛿 – in relation to the X-axis – must be derived from this. The 
easiest way to do this is with a case distinction: 

• As long as 𝑥 > 0: 𝛿 = 𝛼 
• If 𝑥 < 0: 𝛿 = 180° + 𝛼 

The case 𝑥 = 0 must be treated separately so there is no dividing by 0. For 𝑦 > 0, 𝛿 =
90° in this case, otherwise 𝛿 = −90°.  
  



ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 7 of 10 

 

1b. Program (example): 

 
Mecanum_Move_2_Point.ft 

  



ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 8 of 10 

 

2. “Draw by numbers” 
In the general case, the drawing robot is not aligned along the X-axis, rather it is at an 
angle 𝛾 to the X-axis; the angle of rotation 𝛿 must be set in relation to this angle. The 
distance to the (next) target point must be calculated in relation to the position of the 
robot ((𝛥𝑥, 𝛥𝑦)). 

 
Mathematical_Model_Coordinates_Drawing_generalised.jpg 

The points to be approached are saved in three lists with the respective x and y 
coordinates and an “up/down” flag which specifies whether the pen is to be lowered 
(1) or lifted (0) on the way to the point described by the coordinates.  
The coordinates result in the following drawing: 

 
Pumpkin.jpg 



ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 9 of 10 

 

Program excerpt (example): 

 

 

 
Mecanum_Coordinates_Drawing.ft 



ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 10 of 10 

 

Attachments 

Task 4: Drawing robot 

Required materials 
• PC for program development, local or via web interface.  
• USB cable or BLE or WiFi connection for transmitting the program to the TXT4.0.  
• Pen (fineliner, felt pen), large sheet of white paper 
• Program template “Mecanum_Drawing_Coordinates.ft” 
 

Further information 
[1] Look for “Coordinate Grid Picture” on the internet. 
[2] Oliver Boorman: Cartesian Grid Image Generator. 



ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 1 of 5 

 

Name: __________ Class: ___ Date: ________ 

Task 5 
Ball robot 

In this task, the Mecanum-Omniwheels vehicle is equipped with a firing device for 
hollow plastic balls, receives voice control and is supplemented with autonomous 
target alignment with the help of a camera. 

Construction task 
Construct the ball robot according to instructions or convert the Mecanum-Omniwheels 
vehicle from one of the other tasks accordingly Connect the encoder motors, the 
camera and the servomotor as specified on the wiring diagram. 
Use the interface test or your control program from task 1 to check whether all the 
motors have been connected properly. 
 
Important: Only fix the servo lever in place after you have started the TXT. The servo 
is automatically set to the middle setting. Then fit the servo lever onto the servo in such 
a way that it is pointing about “straight on” (in other words to the left in the model) and 
comes to rest behind the green firing strut.  
Attention: If you move the servo lever by hand with the TXT switched on, the servo 
can undergo irreparable damage!  
 

Programming tasks 
 
1. Firing mechanism 
Firing of a hollow plastic ball is triggered by moving the servo lever as far back as 
possible until it releases the tensioned green launching strut. During this, a hollow 
plastic ball slides automatically from the magazine into the firing position. Then the 
servo lever has to be moved back in front of the firing strut. 
1a. Use the interface test to determine suitable positions for the servo lever for firing a 
hollow plastic ball and “preloading” the firing strut again. 
1b. Add a function for firing a hollow plastic ball to your function library for the 
Mecanum-Omniwheels vehicle.  
1c. Fix a button on the side of your vehicle and connect it to I1. Write a Blockly program 
that will fire a hollow plastic ball when the button is pressed. 



ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 2 of 5 

 

1d. Extend your program by magazine fill level indication on the TXT display. Request 
reloading when all the hollow plastic balls have been fired and have successful 
reloading confirmed by button. 
 
2. Voice control 
You can also control your Mecanum-Omniwheels vehicle using voice commands. To 
do so, download the “Voice Control” app from the Apple app store (for iOS) or the 
Google Play store (for Android), and connect it to the TXT 4.0.  
 

• Connection via WiFi: The TXT 4.0 Controller and device (smartphone or tablet) 
must be connected to the same WiFi router. The router must also permit 
communication between the devices. The IP address of the TXT 4.0 with which 
the app must be connected can then be queried via the touchscreen menu 
under “Info” / “WiFi”. 

 

• Connection via WiFi AP: Instead of “WiFi”, the “Access Point” option can be 
activated on the TXT 4.0 under “Settings” / “Network”. Then the smartphone can 
be connected directly to the controller. The WPA2 key required for the WiFi 
connection is available in the TXT menu under “Access Point” (it can also be 
changed and deactivated there). 

 
Once you have connected the app to the Controller, the voice commands are 
transmitted to the Controller in text form, and you can analyse them using the following 
event function: 

 
In your program from programming task 1, replace the function of the button for 
triggering a shot by a suitable voice command that your smartphone will easily 
recognise. 

  



ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 3 of 5 

 

Experimental tasks 
 
In the following four tasks, the Mecanum-Omniwheels vehicle is equipped step-by-step 
with an automatic target finder. 
For this, build a coloured target first in accordance with the construction drawing, and 
set it up at a distance of about 50 cm in front of your Mecanum-Omniwheels vehicle. 
 
1. Target 
1a. Activate the camera in the camera configuration. Configure ball detection in such 
a way, that the centre of the target is exactly in the centre of the detection window 
when the firing device hits the target as reliably as possible. Test the setting using your 
program from programming task 1. 
Note: The camera is upside-down, which means the image must be rotated through 
180° in the camera settings. 

 
1b. If you move the vehicle closer to the target or further away from it, the y-coordinate 
of ball detection changes. Enter the respective y-coordinate for the distance to the ideal 
position in the table below. 

Distance to 
ideal position y-coordinate 

15 cm 
 

10 cm 
 

5 cm 
 

0 cm 
 

-5 cm 
 

-10 cm 
 

-15 cm 
 

 



ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 4 of 5 

 

1c. From this measurement, derive a simple approximation formula that you can use 
to calculate how many cm the Mecanum Omniwheels vehicle must move forward or 
backward to be at an ideal distance to the target. 
 
2. Target distance correction 
Write a Blockly program which makes the Mecanum-Omniwheels vehicle take up the 
exactly correct distance to the target. Use your results from experimental task 1 for 
this. 
Sketch a state transition diagram first. 
 
3. Target alignment 
Write a Blockly program which rotates the Mecanum-Omniwheels vehicle in such a 
way that the target is exactly in the middle of the detection window.  
Draw a state transition diagram for your solution first. 
Tip: The camera has an aperture of 60°.  
 
4. Target finder 
Now your solutions developed in the previous sub-tasks are to be combined. Write a 
Blockly program which makes the Mecanum-Omniwheels vehicle find a target first. 
Once it has found it, it should move the target exactly to the centre of the crosshairs 
and hit the target with the three hollow plastic balls from the magazine. 
First illustrate your solution concept with a state transition diagram. 
Finally, you can let the TXT 4.0 play a sound. 
. 
  



ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 5 of 5 

 

Attachments 
Task 5: Ball robot 

Required materials 
• PC for program development, local or via web interface.  
• USB cable or BLE or WiFi connection for transmitting the program to the TXT4.0.  
• Polystyrene balls 
 

Further information 
[1] FRC Team 2605 (Bellingham, WA): How a Mecanum Drive Works. github.io 
[2] Wikipedia: Finite state machine 
[3] Ferdinand Wagner, Ruedi Schmuki, Thomas Wagner, Peter Wolstenholme: 

Modeling Software with Finite State Machines. A Practical Approach. Auerbach 
Publications, 2006. 

[4] Online diagram editor for creating state transition diagrams (drawio format): 
https://www.diagrammeditor.de/ 

https://seamonsters-2605.github.io/archive/mecanum/
https://www.diagrammeditor.de/


ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 1 of 2 

 

Task 5: Ball robot 

The Mecanum-Omniwheels vehicle receives a firing mechanism for polystyrene balls, 
voice control and a camera for independent target alignment. 
 

Topic 
Image evaluation for determining distance and target alignment. 
 

Learning objectives 
• Experimental analysis of a task 

• “Computational Thinking”: Breaking down a complex task into manageable and 
solvable sub-tasks which are then brought together (“divide and rule” principle) 
 

 

Time required 
For conversion of the Mecanum-Omniwheels vehicle from previous tasks into a ball 
robot, pupils need approx. 90 minutes; in the case of a complete reconstruction 
according to construction manual up to 120 minutes (assuming experience with 
fischertechnik). 
For the development of a control program for solving programming tasks, pupils require 
60-90 minutes. The time needed for solving the experimental tasks – depending on 
age and experience – is 135-240 minutes.  
 

  



ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 2 of 2 

 

Attachments 
Task 5: Ball robot 

Required materials 
• PC for program development, local or via web interface.  
• USB cable or BLE or WiFi connection for transmitting the program to the TXT4.0.  
• Polystyrene balls 
 

Further information 
[1] FRC Team 2605 (Bellingham, WA): How a Mecanum Drive Works. github.io 
[2] Wikipedia: Finite state machine 
[3] Ferdinand Wagner, Ruedi Schmuki, Thomas Wagner, Peter Wolstenholme: 

Modeling Software with Finite State Machines. A Practical Approach. Auerbach 
Publications, 2006. 

[4] Online diagram editor for creating state transition diagrams (drawio format): 
https://www.diagrammeditor.de/ 



ROBOTICS Add On: Omniwheels – Secondary level I+II  

  1 

Name: __________ Class: ___ Date: ________ 

Solution sheet task 5: 
Ball robot 

The tasks are an exercise in using loops and functions with the aim of getting a clear, 
compact and comprehensible program. For this reason, the pupils’ results should be 
compared with one another.  

Construction task 
See building instructions. 
 

Programming tasks 
Configuring the sensors and actuators: 

 
 
The “Voice Control” app (for iOS or Android) is required to solve programming task 2. 
The app must be connected to the internet for voice recognition, and connected to the 
Controller (via Bluetooth or WiFi). 
  



ROBOTICS Add On: Omniwheels – Secondary level I+II  

  2 

1. Firing mechanism 
1a. Suitable values for the variables “fire” and “load” (the positions of the servo lever 
looked for) can easily be determined using the interface test. They are model-
dependent and depend particularly on the position of the fitted servo lever. In the model 
used here, they are between 120 (fire) and 380 (load). 
1b. “Fire” function (example): 

 
Mecanum_Fire_and_Load.ft 

1c. Program excerpt (example): 

 
Mecanum_Fire_and_Load.ft 

1d. Configuration of the TXT display (example): 

 



ROBOTICS Add On: Omniwheels – Secondary level I+II  

  3 

Program (example):  

 
Mecanum_Fire_and_Load_extended.ft 

 
2. Voice control 
Program (example):  

 
Mecanum_Fire_and_Load_Voice_Command.ft 

  



ROBOTICS Add On: Omniwheels – Secondary level I+II  

  4 

Experimental tasks 
 
1. Target 
1a. The target should ideally be at such a distance that the hollow plastic ball hits the 
target a little above the centre.  
In the example model used, this ideal distance is around 35 cm. This model can vary 
slightly from model to model. 
Configuration of the detection window (ball detection): 

 
The larger the detection window and the area of the ball diameter to be detected, the 
larger the maximum deviation from the ideal distance that can be detected. The interval 
[-150, 150] is to be recommended for the X-axis: It uses almost the complete resolution 
(320 pixel) and can easily be converted to an angle, since the camera aperture is 60°. 
The colour and hue tolerance selected must be adapted to the respective light 
conditions. 
  



ROBOTICS Add On: Omniwheels – Secondary level I+II  

  5 

1b. Program for distance measurement (example): 

 
Test_Target_Distance.ft 

Example measurement for the relation between the distance of the target and the y-
value of the ball centre which is provided by ball detection: 

Distance to 
ideal position y-coordinate 

+15 cm 32 

+10 cm 24 

+5 cm 14 

0 cm 0 

-5 cm -13 

-10 cm -34 

-15 cm -58 
 
The values of the y-coordinate of the ball centre returned by the ball detection depend 
on the scaling selected and the height of the detection window. However, except for a 
scaling factor, the values should match those given in the table above. 



ROBOTICS Add On: Omniwheels – Secondary level I+II  

  6 

 
1c. The distance 𝑑 by which the vehicle is away from the ideal distance to the target 
can easily be approximated using two linear functions: 

𝑑 = −

⎩
⎪
⎨

⎪
⎧𝑦 > 0:	

15
32 𝑦

𝑦 = 0: 0

𝑦 < 0:	
15
58 𝑦

cm 

Again, the gradient factor of the straight line depends on the height of the detection 
window and the scaling set in the ball detection and may differ by a factor. 
 
2. Target distance correction 
2a. State transition diagram 

 
State_Transition_Diagram_Correct_Position.drawio 

2b. Program excerpt (example): 

-20

-15

-10

-5

0

5

10

15

20

-70 -60 -50 -40 -30 -20 -10 0 10 20 30 40

Distance to the ideal position



ROBOTICS Add On: Omniwheels – Secondary level I+II  

  7 

 
Mecanum_Correct_Distance.ft 

 
3. Target alignment 
3a. State transition diagram 

 
State_Transition_Diagram_Correct_Position.drawio 

3b. Program excerpt (example): 



ROBOTICS Add On: Omniwheels – Secondary level I+II  

  8 

 
Mecanum_Turn2Target.ft 

  



ROBOTICS Add On: Omniwheels – Secondary level I+II  

  9 

4. Target finder 
4a. State transition diagram 

 
State-Transition_Diagram_Find_Target.drawio 

4b. Program excerpt (example): 

  
Mecanum_Find_Target.ft 



ROBOTICS Add On: Omniwheels – Secondary level I+II  

Page 10 of 10 

 

Attachments 

Task 5: Ball robot 

Required materials 
• PC for program development, local or via web interface.  
• USB cable or BLE or WiFi connection for transmitting the program to the TXT4.0.  
• Polystyrene balls 
 

Further information 
[1] FRC Team 2605 (Bellingham, WA): How a Mecanum Drive Works. github.io 
[2] Wikipedia: Finite state machine 
[3] Ferdinand Wagner, Ruedi Schmuki, Thomas Wagner, Peter Wolstenholme: 

Modeling Software with Finite State Machines. A Practical Approach. Auerbach 
Publications, 2006. 

[4] Online diagram editor for creating state transition diagrams (drawio format): 
https://www.diagrammeditor.de/ 


